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@ Examples of discrete models
© Robinson-Schensted-Knuth correspondence
© A geometric lifting of RSK - Kirillov's “Tropical RSK"

@ The totally asymmetric simple exclusion process

YuXuan Zong (USTC) KPZ Universality December 18, 2021



Overview

@ Examples of discrete models
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Kardar-Parisi-Zhang equation

Definition 1.1 (Kardar-Parisi-Zhang equation)

The Kardar-Parisi-Zhang equation is defined by

Oh

1 1 5 d
i 2Ah+2|Vh| + W(t, x), x€e R t>0. (1)

W is the space-time white noise, which is a distribution valued Gaussian
process, delta correlated in space and time as

E[W(t, x)W(t, x)] = 6(t — s)d(x — y).

Asymptotically for large time t,the solution (1) behaves as
X
h(ta X) R pt+ tl/3n(ﬁ)a (2)

where p is a macroscopic constant and 7( - ) is a random function.
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Corner growth

Let us map the features of the corner growth process to the terms of (1).

@ The fact that unit squares fill corners is consistent with the
smoothing effect of the Laplacian.

@ Parts of the interface which are very stretched, grow slower than
other parts with many corners. This is consistent with the growth of
the interface being proportional to |422.

@ The randomness and independence of the waiting times until corners

are filled is consistent with the presence of W.
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Corner growth

Each corner turns into an unit square after an exponential rate 1 waiting

time.
Define h(t,x) = height above x at time t. Wedge initial data is h(0,x)=|x|.

Theorem 1.2 [Rost 1981]

For wedge initial data as t grows,
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Corner growth

Lt
Define the rescaled height function hy(t,x) = L=Y/3[h(Lt, L*/3x) — 5].

Theorem1.3 [Johansson 1999]

For wedge initial data as L grows,

P(h.(t,0) > —s) = Feue(s)- (4)
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Interacting particle systems - exclusion process

We can map the interface and the dynamics of the corner growth process
to an interacting particle system

This configuration can also be projected onto the one dimensional lattice
%Z, with 1's corresponding to particles and 0's corresponding to empty
sites.

The waiting times are exponentially distributed, then this particle process

is Markovian and known as the Totally Asymmetric Exclusion Process
(TASEP).
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Interacting particle systems - exclusion process

For each x € %Z let us denote by

Ct(X) = l{a particle occupies site x at time t}-
Then we see that

h(t,x) — h(t,x—1)+1

Ge(x) = >
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Last Passage Percolation

We define two signs as follows:

@ 7, time for the corner growth interface to cover a corner with
bottom site (x, y)

® wy,: time for bottom site (x, y) is covered once neighbouring sites
(x—1, y—1) and (x+1, y—1) are covered.

Now we have the recursive equation

Txy = MaX(Tx—1,y—1, Txt Ly—1) + Wiy (5)

Iterating this and denoting by HXJ, the set of directed, up-left or up-right
paths from (1,1) to (x,y), we derive the variational formula

X,y — Ve 6
Ty 7rr;wlg[x Zw (6)

XY ver
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Last Passage Percolation

This is depicted in the following figure:

The quantity (6) is known as Last Passage Percolation time and its
statistics are linked to the statistics of the height via

P(h(t, x) = y) = P(7x, < t).
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Hammersley Process and Longest Increasing Subsequenses

Now we consider the degenerate last passage percolation problem: In the
square with side length N, and lower-left corner (0, 0) we have a Poisson
Point Process with intensity 1 and we ask what is the maximum number
of Poisson points(the length of the longest path) that can be collected by
going from (0, 0) to (N, N) via an up-right path.

This is known as Hammersley problem.

[
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Hammersley Process and Longest Increasing Subsequenses

We can read the length of such maximal path as follows: From each point
draw a horizontal and vertical line going rightwards and upwards,
respectively. If two such rays meet, they cancel each other.

From the above figure, we can see that the length of the longest path
equals the number of rays that reach either the top or right side of
the square.
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Hammersley Process and Longest Increasing Subsequenses

We can map the Hammersley problem to the problem of longest
increasing subsequence in a random permuation as follows:

@ Order the horizontal and vertical coordinates of the Poisson points in
the square according to the order of their projections.

o Write the coordinates (x,y) of each point in the form of a biletter(}).

o the length of the longest upright path through these points equals the
length of the longest increasing subsequence in the permutation.

In the example of the above figure, we represent all the points in the form
of a double array as

9 10

3 8

1 2 3 4
1 10 2 4

So the length of the longest upright path is

5 6 7 8
756 9
6.
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Overview

© Robinson-Schensted-Knuth correspondence
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Young tableau

@ A partition of a number n is a sequence of non-increasing numbers
A=A >---suchthat A\{ + )Xo +---=n.
@ A partition can be depicted by Young diagrams. These are arrays of

left justified unit boxes, the first row of which has \; boxes, the
second row A, boxes etc.For example:

A=(4,3,1) — ]

@ The boxes in a Young diagram are usually filled with (integer)
numbers giving rise to either a standard Young tableau,if the
content of the boxes are strictly increasing along rows and columns,
or a semistandard Young tableau, if the contents are strictly
increasing along columns but weakly increasing along rows.

@ The vector (A1, A2, - - ) of the lengths of the rows of the Young
tableau T is called the shape of the tableau and we denote it by
sh(T).

YuXuan Zong (USTC) KPZ Universality December 18, 2021 14 /66



Robinson-Schensted correspondence

Consider a permutation

< 1 2 ... n )
g = '
X1 Xo - Xn
where we denote x; := o(/).

The Robinson-Schensted(RS) algorithm gives a one-to-one
correspondence between a permutation o € Sy and a pair of standard
Young tableaux, which we will denote by (P, Q).It works as follows:
o Starting from a pair of empty tableaux (Po, Qo) = (0, 0), assume that
we have inserted the first i biletters (;), 1 < i< Nof the

permutation o € Sy and we have obtained a pair of Young
tableaux(P;, Q)).
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Robinson-Schensted correspondence

o Next, we insert the biletter ()’:;11) as follows:
If the number x;y1 is larger or equal than all the numbers of the first
row of P;, then a box is appended at the end of the first row of Pi
and its content is set to be x;11. This is the tableau P;;;. Also a box
is appended at the end of the first row of @Q; and its content is set to
be i+ 1, giving the tableau Q;11.
If there is a box in the firstrow of P; with content strictly larger than
Xi+1, then the content of the first such box becomes x;;1 and the
replaced content drops down and is row inserted in the second row of
P; following the same rules and creating (possibly) a cascade of
dropdowns (called bumps). Eventually a box will be appended at the
end of a row in Pi or below its last row, in which case it creates a new
row, and the content of this box will be the last bumped letter. At
the same, corresponding location a box will be added at Q; and its
content will be set to be i+ 1.

@ We repeat the above steps until all biletters have been row inserted.
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Robinson-Schensted correspondence

An example:

@ permutation:

@ sequence:
3 5 [3TE L 6 [1]2]4] 2
0.0 =[3] O]=3B]3] —> B =
2 [1]2]6] [1]2]a] s [1]2]4] [L]2]4] 7, [L[2]4]7] [1]2]4]7]
315] 315] Bl5l6] [3]5l6] " [35l6] [3]5l6]

Some observations:
@ Tableaux P and @ have the same shape.
@ Tableaux P and Q are actually equal.

@ The length of the first row of tableaux P/Q equals the length of the
longest increasing subsequence in the permutation.
Moreover, the length of the second row of the output tableaux equals
the length of the second longest increasing subsequence.
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Robinson-Schensted correspondence

Actually, the second observation is not a general fact but a consequence of
the fact that the permutation is symmetric, i.e 0 = o1

The above observations are summarised in the following theorems:

Theorem 2.1 (Schensted)

The RS correspondence is a bijection between permutations and pairs of
standard Young tableaux (P, Q) of the same shape. If o € Sy and

(P, Q) = RS(0) is the image of o under RS-correspondence, then

(Q, P) = RS(0~1), where 01 is the inverse of permutation o. In
particular, if o = 071, then P = Q.
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Robinson-Schensted correspondence

Theorem 2.2 (Greene)

Let o € Sy and (P, Q) = RS(0).Then, the length A; of the first row of the
output tableaux P or @ equals the length of the longest increasing
subsequence in o. Moreover, the sum A1 + A2 + - - - + A, of the lengths of
the first r rows equals the maximum possible length of unions of r
increasing subsequences in o.
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Robinson-Schensted-Knuth correspondence

Matrice +— Pairs of seminstandard Young tableaux

where matrices with nonnegative integer entries.

Let the matrix W = (WJ’:)1<,<,771§1<N, where i indicates rows and j columns,
as a sequence of n words

W= 1M NN = 1...12...2... N--- N (7)
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Robinson-Schensted-Knuth correspondence

The Young tableau P is constructed as follows:

@ Start by inserting w! the insertion of w! will produce the one-row
tableau
'U;‘i 'U;‘é “:11\'

— )

P=[l 122l [N N

the tableau can be identified with the single word
pti= 1PIP1 ... PN = 1™I2%2 ... \™h = wl,
@ Next, we insert word w? into P; and this insertion will produce a new
tableau P;. We denote this schematically as

w2 -
P1 % P]_.
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Robinson-Schensted-Knuth correspondence

e This insertion will change the first row p' of Py by (possibly)
bumping some letters out of it and replacing them with letters from
w?. The bumped letters will form a word, which will then be inserted
in the second row of the tableau. We denote this schematically as

w2
pt 4+ P,
2

with p:l denoting the first row of Py, ;31 the first row of F31 and V2 the
word that will form from the bumped down letters from P; after the
insertion of w?.
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Robinson-Schensted-Knuth correspondence

@ The following picture is a building block of RSK, since the row
insertion of a word w in a tableau P consisting of rows p1, p2, - , pn,
can be decomposed as(w := V')

It means that the letters that will drop down from p!, after the
insertion of v} = w, will form a word 2 which will be inserted in p2,
forming a new row p? and so on.

e Remark:Row p' only include letters with value larger or equal to_i.
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Robinson-Schensted-Knuth correspondence

Proposition 2.3 (RSK row insertion)

Let 1 < i< N. Consider two words x = /(i 4 1)+ ... N*N and
a= /"'(/+ 1)@+1 ... N The row insertion of the word a into the word x
denoted by

b
U'Tm
2

transforms (x,a) into a new pair (%, b) with X = (i + 1)%+1 ... \¥V and
b = (i+ 1)b#1 ... Nbv, which in cumulative variables (for j > i)
=i+ X1+ +x,§ =X+ Xip1+ - - + Xj is encoded via (for i < N)

Ei=¢&+a
&, = max(€x_1, k) + ak, 1<k N (8)
bk = ak + (x — Ek—1) — (fk—ﬁk—l)/Jr < k<N

4
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Robinson-Schensted-Knuth correspondence

An observation: The recursion & = max(fk_l,fk) + ay is actually the
same as the recursion of last passage percolation (5). Now let i=1, We
iterate as

En = max(n_1 + an, En + an)

= max(max(én_2 + an_1 + an, En—1 + an—1 + an), En + an)

(9)
= lrgjixN(fj +aj+---+an)
= lgjixN(Xl+....|_XJ._|_QJ._|_...+3N)7
which, as shown in the figure below, is a last passage percolation on a
two-row array
= ; ]
s wags ofnodes [ [ [ [ ] LIl ] ]a (10)
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Gelfand-Tsetlin parametrisation

Gelfand-Tsetlin (GT) patterns are triangular arrays of number

(Zji-)lgg,‘gl\/, which interlace, meaning that zjﬂ < zj’ < zJ’:H,and for this
reason they are depicted as

A

Z 3
g 2

o

N N N
Zy Iy % :

They provide a particularly useful parametrisation of Young tableaux:

given a Young tableau consisting of letters 1,2, -- N, the Gelfand-Tsetlin
variables z} are defined as

Z = Zi# {k’s in the j& row}

k=j
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Gelfand-Tsetlin parametrisation

In GT parametrisation,We define the vector

(IZ] =127 1 i=1,...,N), with |Z] .= 30, 2,
and the convention that |2°| = 0.Considering a pair of GT patterns (Z,Z’)
as the output of RSK with input matrix W= (w))1<i<n1<j<n, that is
(Z,Z’) = RSK(W), with Z corresponding to the P tableau and Z to the
Q tableau in the RSK correspondence. Now we have the fact as follows:

k—1

SRR T WIS WEREE S SURER
=1 j=1
k—1

= # {k's in the ki row} + # {k’s in the j* rOW} (11)

=> W
i=1
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© A geometric lifting of RSK - Kirillov's “Tropical RSK"
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Introduction

@ As we have seen in Proposition 2.3, RSK can be encoded in terms of
piecewise linear recursive relations, using the (max, +) algebra.
Kirillov replaced the (max, +) in the set of RSK's piecewise linear

relations with relations (4, X), thus establishing a geometric lifting
of RSK(gRSK).

@ In this section we will present the construction of gRSK following
mostly a matrix reformulation by Noumi and Yamada motivated by
discrete integrable systems. The approach is closely related to that of
Proposition 3.3. Let us start with the definition of the geometric row
insertion.

YuXuan Zong (USTC) KPZ Universality December 18, 2021 28 /66



Geometric RSK via a matrix formulation

Definition 3.1
Let 1 < i< N. Consider two words x = (x;j, Xi+1,- - ,Xy) and
a = (aj,ai+1, - ,an) We define the geometric lifting of row

insertion(geometric row insertion) of the word a into the word x
denoted by

a
x +— X
b
transforms (x, a) into a new pair (X, b) with X = (X;, Xi11,- -+ ,Xy) and
b = (bit1,- -, by), which in cumulative variables (for j > i)

& = XiXiy1 -+ Xj, & = XiXiy1- - Xj is encoded via (for i < N)

Ei = a;
&= ak(gk:l +&),i+1< k<N (12)
o= a L 1<k N

Er—1&k

4
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Geometric RSK via a matrix formulation

From relations (12), we can get the following equations:

a,-x,-:)?,-
ajszj'(jbj fij}l'-F].
111
ai  Xiy1  biya (13)
1 1 1 1 L
— 4+ =—+— forjzi+1

3 X1 X b

The derivation of the system of equations in (13) from (12) is a matter of
a simple algebraic manipulation. (13) can be put into a matrix form

as(x := )1()
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Geometric RSK via a matrix formulation

1 1
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Geometric RSK via a matrix formulation

For the convenience of expression, we define the matrix

i—1 N N—-1
Ei(x) := Z Ej+ ZXJ'EJ'J' + Z Ejj+1,where x = (Xis Xit1y "+ 5 Xn)-
j=1 J=i Jj=i

Then we write the (%) as

Ei(a)Ei(X) = E{(X)Ei+1(b) (14)

Ei(x) can be readily read graphically from the following diagram:

where on the diagonal edges and on the first (i—1) vertical edges we
assign the value 1 and on the rest of the vertical edges we assign the
values x;, xj+1, -+, xn in this order.
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Geometric RSK via a matrix formulation

(Continued from above)

The (k, 1) entry of Ef(x) is given byEi(X) (k1) = D_ (1,0 (2,) WE(T), where
the sum is over all down-right paths, along existing edges, starting from
site k in the top row to site | in the bottom row and the weight of the path
7 is given by the product of the weights along the edges that path 7
traces. Now we define the general form

E(y',y%, - ¥¥) = Ei(y")Ea(y?) - - - Ex(y*), where y' = (¥}, ¥ii 1, 5 Viy)-
The entries can be read graphically from the following diagram:

i
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Geometric RSK via a matrix formulation

(Continued from above)
where a vertical edge connecting (a, b) to (a+ 1, b) is assigned the weight
yg and all the diagonal edges are assigned weight one.

The (i,j) entry of E(y!,y?,---,y¥) is given by E(y',y?,--- ,yk)(,-J)

= r(1)—(knj+1,) WE(T), where the sum is over all down-right paths,
along existing edges, from site (1, /) in the top row to site (kA j+ 1,)
along the lower border and the weight of a path wt(7) =[],
the product is over all edges e that are traced by the path 7.

We, Where
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Geometric RSK via a matrix formulation

Let rows i1 < --- < i, and columns j; < --- < j.. We can get the following
equation:

det E(y',--- ¥y = Y wi(m)-wi(m)  (15)
memel [

where Hﬁgl: is the set of directed, non intersecting paths, starting at

locations iy, - - - , i, in the top row and ending at locations ji,--- ,j, at the
bottom border of the grid:
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Geometric RSK via a matrix formulation

The equation (15) is a consequence of the following Theorem:

Theorem 3.2 [Lindstréom-Gessel-Viennot]

Let G= (V, E) be a directed, acyclic graph with no multiple edges, with
each edge e being assigned a weigth wt(e). A path m on G is assigned a
weight wt(m) = [, We. We say that two paths on G are non-intersect
ing if they do not share any vertex. Consider, now, (ui,--- ,u,) and
(vi,---,v,) two disjoint subsets of V and denote by Hell ?\L/'r’ the set of all
r-tuples of non-intersecting paths 71, - - - , 7, that start from v, - , u, and
end at vi,-- -, v, respectively. We assume that v, -+ ,u, and vi,--- , v,

have the property that for i < i’ and j > j’, any two paths 7 € []; and

V;r . o -
7' € ][4, which start at u;, ujrand end at v;, vjr, necessarily intersect. Then

det( > wt(m))icijer = >, wt(m)---wt(r,)  (16)

» . .
wel ], Lo off
v sl WrEHJL...,J,

o
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Geometric RSK via a matrix formulation

Let us start with the i = 1 case, where we recall the convention that
Ei1(x) = E(x), and define
H(x) := DE,-(i)_lD_l, with D= diag((—l)"_l),.'i1

We can compute that H(x) = > ;o XiXit1 - - - x;Ejj. Generally, for
k> 1, and x=(xk, - - - , xn),we define

)= ('3 )

The equation (14) can be written as

Hi(x)Hi(a) = Hi1(b)Hi(X) (17)
Similar to E(y*,--- ,y¥), we define the general form

Hy - ,y%) == Hi(y¥) - - Hi(y'), where y' = (vl yi, 1, -+, Yi)-
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Geometric RSK via a matrix formulation

Let rows i1 < --- < i, and columns j; < --- < j.. We can get the following
equation:

det H(y*, -,y = 3 wi(m) - wi(m,) (18)

Ty T

where the sum is over up-right, non crossing paths, starting at locations

i1, -+ iy at the bottom border (including possibly the diagonal part) and
ending at locations ji, - - ,j, at the top row of the grid.
Gl e jr .
.y Y
l :
i
yk

ir

Each vertex (a, b) of the grid is assigned a weight y; and in this case the
total weight of a path is wt(m) =[], pyer Y3
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Geometric RSK via a matrix formulation

Theorem 3.3
Given a matrix X := (XJI)EE’;\/ = (x%,---,x™T the matrix equation
H(x<" Y H() - - H(X") = Hi(y Y Hi-1 (Y1) - - Fa(y"), k = min(n, N) (19)

has a unique solution (y!,---,y¥) with y":= (y},- -+, y4), given by

i i_i—1

yi= TLI and yj’ = iiljj,l for i<}, (20)
T T T
i 7
where '
= E wt(my) - - - wt(mr,) (21)

T "’EH :+1
is a partition function correspondlng to an ensemble of i non intersecting,
down-right paths 71, --- , 7}, along the entries of X, starting from
(1,1),---,(1,/) and ending at (n,j— i+ 1),---,(n,j), respectively, with
the weight of a path m, given by wt(m.):=[], pyex, X5

v
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Geometric RSK via a matrix formulation

Let us now describe how gRSK can be encoded in this matrix formulation.
We will make reference to the following diagram:

z! 22— g2l JC S X
ﬂ 3 yLL _y2,1 3 yf{,l
122'2 $J3.2
m 3 _y2,2 3 ,y”.,Q
33.3
o % oo
0
where x' = (x’17 e 7X'N) for i < 1, is a sequence of words, which are

successively row inserted via gRSK.

This procedure continues during the first N insertions at which stage the
resulting tableau will have full depth of N rows.
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Geometric RSK via a matrix formulation

After first N insertions, no additional rows will be created in the
subsequent tableaux and the process continues as follows:

J!N-H — z.'\"+l,l 12N+2 — IN+2’1 12N+3 — a:_-'\'+3.L
N1 N+1,1 N+2.1
Yy —+ y —+ y —+
z:_“-'-f— 1,2 m:‘-’+2.2 I‘N +3,2
N2 N+1,2 N+2.2
y —+ yr —+ yNt —+
m;'\-'+1.3 m;\'+2.3 :I:N+3.3
N3 N+1,3 N+2.3
Yy —+ Yy —+ y —+
1:;'\ +1.4 J:'N +24 .T‘N +3.4
m.'\JrL N 1:_"\-'+2.N 1:'\-+’. N
NN N+1N N+2IN
Y -+ yt 4 yVt -+
1] ] ]
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Geometric RSK via a matrix formulation

Overall, we can get the following matrix equation:
H(x' ) H(x?) -+ H(x") = Ha(y™")Hp—1(y™"") - - Hi(y™),n < N

(22)
H(xX ) H(x?) - H(x") = Hn(y™ ") Hna(y"" 1) -+ Ha(y™), n < N
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Geometric RSK via a matrix formulation

Theorem 3.4
Consider a matrix X := (x’ 1 <i< n,1 << N) with nonnegative entries
and denote by (x!,---,x") its rows and by (xi,--- ,X,) its columns. Then

there exists a one-to-one correspondence between X and set of variables
o= (p,, -, phy) fori=1,--- min(n,N) and q' := (¢}, - , q',) for
=1,---,min(n, N), which are uniquely determined via equations.

H( Y HOR) -+ HX™) = Hi(p¥) Hie1(pF1) - Hy(pY), k = min(n, N)  (23)
Hix1)H(xz) - H(xs) = Hi(@") Hi_1(a“"2) - Hy(a"), k = min(n, N)  (24)

Variables (p}) and (g;) are given in terms of the input variables (x)) via
relations (19) and (21).

For a full proof of this theorem, we refer to [4], Section 3 and Theorem 3.8.
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Geometric RSK on Geometric Gelfand-Tsetlin patterns

H e ] . . . ' f— i /
Consider Z = (Z})nglgndgnAN, Z' = (Zj)lgjgign,jgn/\N- We set

zJ’.-::pj:pj:H-"pf_lpfforlngig nj<nAN
(zJ’:)'::q}qj._i_l---qf_qu-forlgjgig nj<nAN
where pl,---  p¥and q',---,q* are as in Theorem 3.4.

Theorem 3.4 establishes a bijection between matrices X = (X})lg,‘gn’lgjgN
with nonnegative entries and a pair (Z,Z’) = gRSK(X).

we obtain that variables zJ’ are given in terms of ratios of partition
functions from (20):
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Passage to standard combinatorial RSK setting

Replacing in (12) variables €k Eks ak, by by eﬁk/g,egk/e,eak/e,ebk/s, taking
the log on both sides of each relation therein and multiplying by ¢, the set
of equations (12) writes as

§i=¢i+a;

& = ak+6|og(e§~k—1/€+e5k/5),i+1 <k<N (25)

b= a+ (& — 1) — (Ge— 1), i+1< kSN
Taking now the limit € — 0 these reduce to the piecewise linear
transformations (8) defining the standard RSK correspondence.
Replacing also the variables xJ"-, pj"-, qJ’: in Theorem3.4 by /%, eP//%, %/% we

obtain in the limit ¢ — 0 the RSK correspondence, in the sense that
variables (pJ’) and (qJ’) encode the P and Q tableaux of the standard RSK.
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Passage to standard combinatorial RSK setting

In particular, the solution to the degeneration, as ¢ — 0, of problem (23)
is given via the degeneration of relations (20), (21) as:
i i i—1 i1 i—1 i . .
pi=o;—0; andpj—a—i-a —0; —O'jilfOI’I<j,
i
with o := max Z wt(7g)
memel 0 et

being last passage percolation functionals corresponding to ensembles of i
non intersecting, down-right paths 71, - - - , 7, starting from

(1,1),---,(1,/) and ending at (n,j— i+ 1),---,(n,j), respectively. The
weight of a path , in this case is wt(m,) := 3, pyex, X5

YuXuan Zong (USTC) KPZ Universality December 18, 2021 46 / 66



Passage to standard combinatorial RSK setting

Passing to the Gelfand-Tsetlin variables, we set
Gi= Pt Pt b P T =00y
for L <j< i< nandj< nAN. From this we get that
zf’+~-—|—zj’-v ::oJ,'V

which in the case j = 1 is Schensted’s theorem and for j > 1 is Greene's
theorem.
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Overview

@ The totally asymmetric simple exclusion process
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Introduction

e Asymmetric simple exclusion process (ASEP):

—O—e—0— = = —O0—0——

(4)
oo —é IR

—o—o0—e

(B)

Particles in this model jump to the right with rate p and to the left
with rate g such that p+ g = 1, following the exclusion rule.

@ TASEP (the totally asymmetric version of ASEP, i.e. p = 1)
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Introduction

e Q-TASEP (Simple traffic model):
rate = 1 — g&*P
————O0—8—0—0—0—0—8—0—
= pgap =4 —

@ Q-PushASEP :

rate = I rate = 1 — g&°F

—O——— O OO e O p—C—

(4)
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The growth process

@ Definition: We follow the standard practice of ordering particles from
the right; for right-finite data the rightmost particle is labelled 1. Let
us denote positions of particles at time t > 0 by

Xe(1) > Xp(2) > Xe(3) > -+ -,
where Xi(i) € Z is the position of the i-th particle.

@ The TASEP height function is a random walk path
he(z+ 1) = ht(z) + ne(2) with n(z) = 1 if there is a particle at z at
time t and —1 if there is no particle at z at time t.

e We have
h(2) = —2(X H(z - 1) = X' (=1)) - z
which fixes hg(0) = 0.X; (u) = min {k € Z : X¢(k) < u}.
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TASEP's Overview

o First, we prove the Schiitz’'s formula, which gives the transition
probability of TASEP particles in determinantal form. And in turn we
can derive Py(X¢(k) > a).

Remark: The Schiitz's formula is not suitable for asymptotic analysis
of TASEP, because the size of the matrix goes to oo as the number of
particles N increases.

@ Next, We provide some results on Determinantal point process. At
the same time to prepare for finding correlation kernel.

@ Finally, We use Non-intersecting random walks and find
correlation kernel to get the asymptotic analysis of TASEP.
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Distribution function of TASEP

Let x € Qn = {x1 > - > xn} C ZN, where Qp is called the Weyl
chamber.

Proposition 4.1 (Schiitz’s formula)

The transition probability for 2 < N < oo TASEP particles has a
determinantal form:

P(X: = x| Xo = y) = det[Fi_j(xn+1-i — Yne1—)js Dli<ijen  (26)

with x,y € Qp, and

Fn(X, t) _ (_1-),' f} (1 — W)_nef(W—l)dW, (27)

2mi wx—n+1

where I 1 is any simple loop oriented anticlockwise which includes w =0
and w=1.
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Distribution function of TASEP

e Approach: Bethe ansatz (from quantum integrable system), an
ansatz to diagonalize certain matrices.

@ Proof: Four steps.
- Consider N > 2 particles in TASEP and derive the master
equation (Kolmogorov forward equation) for the process
Xe = (Xe(1), -+, Xe(N)) € Q.
- Find a general solution to the Kolmogorov forward equation.
Find a particular solution which satisfies the boundary and
initial conditions.
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Distribution function of TASEP

@ Notations and Operators:
N
- Py, %) 1= P(X; = x| Xo = y).

N
: (ﬁ(N)F)(X) = _Zl{xk—xk+1>l}(v;l__)(x)7

k=1
where F: Qn — R, xpp1 = —00.

* V. is the discrete derivative

V f(z)=f(z)—f(z—1),f: Z—R

acting on the k-th argument of f.
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Distribution function of TASEP

@ Stepl: Construct Kolmogorov forward equation:

d N N
P ) = LMPPy ), Py, ) =4y (28)
The idea is to rewrite (28) as a differential equation with constant
coefficients and boundary conditions, i.e. if ugN) : ZN — R solves

d (n N N N

G0 ==Y Vw9, w0 =0 (29)

k=1
with the boundary conditions

V;ugN)(x) =0, when xx = x)41 + 1 (30)

then for x,y € Qp one has with the boundary conditions

PM(y,x) = ul™(x) (31)
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Distribution function of TASEP

o Step2: Find a general solution to Kolmogorov forward equation:
Consider indistinguishable particles
(N)
Z ug ' (Xo)
ogESN
where Sy is the symmetric group and x, = (X5(1),*** , Xo(n)). With
this in mind we define the generating function

N 1 N
W) = e D0 D WiV
x€ZN oc€Sy
where w € CV,w* = Z* - - - Z}¥ and |Sy| = N!. Since we would like

the identity (31) to hold, it is reasonable to assume that
|ugN)(X)| < min; (ffyy’), which guarantees locally absolute
convergence of the sum above and all the following computations.

Now we can get the following equation:

N
o) = —o{w) > (w— 1) (32)

k=

[y
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Distribution function of TASEP

(Continued from above)
o By ODE theory, We conclude that

N
of" (w) = C(w) [T e,
k=1

for a function C: CN — C which is independent of t, but can depend
on y. Then Cauchy’s integral theorem gives a solution to Kolmogorov
forward equation

1 01" (w)
(x) = _ 1 dw
(27“),\/ oESy To WU+1
e(w—1)t
(2N Z j{ presuCll (33)
27“ I k 1 Wak(k)
where x +1 = (x; +1,--- ,xy + 1) and I} is a contour in C" around

the origin.
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Distribution function of TASEP

o Step3: Find a particular solution which satisfies the boundary
conditions.:
We are going to find functions C and a contour I such that the
solution (33) satisfies the boundary conditions (30). More precisely,

we consider functions C,(z) to C(z).
In the case xx = xx+1 + 1, the boundary condition (30) yields

—1 N

1—w
N) a(k) wj—1)t
() =~ zﬁ o T o

oeSy ¥ 10 iZkk+1l To(i) o(k) Vo(k+1) j=1

Co(w)  Flwor) (w—1)t
= 27-“ (o \N Z f} M/,—Fl xk He ! dW

W,
oesy Y T0 itk k1 Wo(i) (Wo () Wo (k1)

:O7

where f(Wy() =1 — k)
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Distribution function of TASEP

(Continued from above)
e For all w e CN, we have
Z Co(w)f(wa(k))

(Wor (k) Wor (k1))

oESy
Let Tx € Sy be the transposition (k, k+ 1), i.e. it interchanges the
elements k and k+ 1. Then the above identity holds if we have

Cg(w)f(Wo.(k)) + CTkJ(W)f(Wa(kJrl)) =0. (34)
Choose C,(w) to be

N

Co(w) = sgn(o) [ | f(wo()'d(w), (35)

i=1

which satisfies the identity (34) for any function ¢ : CVN — R.

YuXuan Zong (USTC) KPZ Universality December 18, 2021 59 /66



Distribution function of TASEP

@ Step4: Find a particular solution to satisfy the initial conditions:
Combining (33) with (29), the initial condition at t = 0 is given by

Cy (w
27r|)N Z 7{ x(“) = Oyx (36)

If o = id € Sy and Ciyg(w) = wY, it will satisfy the identity (36). So
choose the function ¢ in (35) to be

Hlw) = F(wi) .

Thus, a candidate for the solution is given by

k o (k) a(wk—1)t
ut" (x) = )N Z 7{ sgn( U)H res) Y e+1 dw
k=1 (k)
which can be written as Schutz s formula (26). It is obvious that the
contour Iy should go around 0 and 1, since otherwise the
determinant in (26) will vanish when x and y are far enough.
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Distribution function of TASEP

(Continued from above)

@ Prove that the solution satisfies the initial condition. We have

Fa(x,0) = (_1)"}[ L=y,

2mi Toa WX—i—I‘H—l '

which in particular implies that Fj(x,0) =0 for x < —n and x > 0,
and Fo(X, 0) = 0x,0-

After computing, we obtain that the matrix is upper-triangular with
delta functions at the diagonal, which gives us the claim.
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Distribution function of TASEP

From Schiitz's formula, let I = B(0, R), R > 1. we can derive
Py(Xe(k) = a).

+oo
Py(Xe(k) = a) = > P(Xe = x|Xo =y, Xe(Kk) = b)
b_
+oo

+oo
Sy Y Y BXe=xsy)

XN=a xy—1=xn+1 x1=x2+1

+oo +oo +oo too
:Z Z Z det(Fl,',Fz,',-", Z FNi)

xy=a xy_1=xny+1 xp=x3+1 x1=x2+1

—+00

+oo
= det(Fyj, Far, -+, Y Z e > Fn) o (37)

XN=a xy—1=xn+1 x1=xp+1
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Distribution function of TASEP

(Continued from above)

—X2

“+oo
w
From Z w = 1 we have that
w—

x1=xp+1

o o n i—N
Z Z 1 1
: ( ) 0,1 (W ) i et(w 1)dW

x1=xp+1 x1=xp+1

_1\n _ 1\i—N +oo
_ 1)% (w—1) otn—1) Z W
I

2mi W*Yn+1—i+i+1*N

_ (=7 (w—1)"Nt etv=1) g,y
27i Tos wXe—Ynt1—iti+1=N

Repeating the last process, we have that
too too )isz

+oo
_ (= (w—1 t(w—1)
Z Z Z Fri = i o, Wa—l—yn+17i+i+1—Ne dw.

xXNy=a xy_1=xn+1 x1=x2+1
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Distribution function of TASEP

Combine (37), we derive that

)I 2N

Py(Xe(k) > a) = det(Fuj, Faiy - - e "Ndw).

27r| VVa 1 Ynt1—it+i+1-N
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Thank you !
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